

SP 04: Carbon stocks, turnover and nutrient budgets in soil along land-use and climate gradients

Simone Hoffmann, Jens Boy, Georg Guggenberger

Rationale

Soil organic matter represents the most important terrestrial carbon sink. Therefore, understanding of the driving mechanisms controlling SOM stabilization is crucial for predicting effects of land-use and climate change on carbon sequestration as well as potential nutrient status. These are prerequisites for a sustainable and carbon friendly land management.

Objective

- (1) Determine native stocks of C, N, P, Mg, Ca, and S
- (2) Decipher temporal change in C and nutrient stocks using space for time substitution
- (3) Analyze the quantity and quality of stored C
- (4) Quantify the C turnover rates affected by landuse management
- (5) Evaluate the influence of climate change on C turnover rates
- (6) Parameterize a C and N turnover model

Methods

- (1) Carbon and nutrients stocks and spatial distribution, including deep soil (elemental analyser and bulk density)
- (2) SOM fractions and composition(density fractionation, biomarker)
- (2) C turnover rates
 (14C and 13C isotopes)

Workplan and collaboration

Fig. 1: Scientific aims and networking of the subproject 04

Expected Results

Fig. 2: Expected results and networking of subproject

Benefits

Fig. 3: Soil organic matter management as a tool to assure sustainable food production and optimize carbon storage in soil

SPONSORED BY THE